ENERGET1°C5

Financing Renewables in Southern Africa

Oxpeckers

Dr Mary Stewart and Anita Stadler | 28th July 2022

We address climate risk and unlock innovation to create value for organisations.

CLEAN ENERGY TRANSITION

DATA INSIGHTS & ANALYTICS

Authors

Anita Stadler

https://www.linkedin.com/in/anita-stadler-a84b34b

- Consulting: PWC, IBM
- Banking: Barclays Bank, S-Zone Consulting
- Projects and commercialisation: Carbon Reduction
 Institute
- Consulting: Energetics
- BEcon, Stellenbosch
- M ApISc (Env Sci), Sydney

Mary Stewart

https://www.linkedin.com/in/mary-stewart-88ba355

- Mining industry: Goldfields of South Africa
- Academic: UCT and Sydney
- Consulting: Energetics
- BSc (Chem Eng), Wits
- PhD, UCT

Contents

.0	Overview of the renewables project spectrum
.0	Financing across the project life cycle
.0	Financing sources and their efficacy
.0	SA – a case study
.0	Discussion
	Appendix

0.2	
1.0	Overview of the renewables
	project spectrum

The energy generation system

Source: IRENA, 2021a. Note: TWh = terawatt hour.

T	Typical activities and indicative timeline					STAGE 6
					+ STAGE 5	Decommissioning or repowering
				+ STAGE 4	Operation	 Remove or repower
			+ STAGE 3	Commissioning	– Asset management	 Recycle if removed
		+ STAGE 2	Construction	 Before connecting to the 	OperationMaintenance	
+ S´	TAGE 1	Development	CivilElectrical	network, test that generation		
	Carly stage evelopment	approval pro-	 Equipment procurement and installation 	performance standards are met / not		
-	Resource assessment Land options Early stage community and environmental assessments	 Network connection approvals Secure an off-taker Financial close Appoint EPC supplier 		negative impact on network		
Timeframe	1 - 3 years	3 – 5 years	1 to 3 years	3 months to years	20 – 30 years	<1 year

+

Who can renewable energy projects sell their output to?

Revenue options / strategies are heavily influenced by the market design and prevailing regulations in each country

- Government auctions (or selling to a single state-owned utility buyer)
- Corporate offtakers (physical or financial arrangement?)*
- Electricity retailers (if they exist)

* Direct "wheeling" of power though open grid access is often not permitted

Spectrum of business models common amongst global renewable energy project proponents

2.0 Financing across the project life cycle

+

Typical finance sources across the project lifecycle

Given the risk profile of investment in infrastructure in developing countries, blended finance is prominent

Mobilizing

(Public &

funders)

Blended finance consist of two or more sources of finance from:

- Development agencies and ٠ multi-donor funds
- Multilateral development banks ٠ (MDBs) and development finance institutions (DFIS)
- Impact investors
- Commercial investors
- Philanthropic organisations

Typical blended finance mechanisms and

structures

Convergence, www.convergence.finance/blended-finance/2021

Given the risk profile of investment in infrastructure in developing countries, blended finance is prominent

Proportion of closed transactions by blending approach

Proportion of financial commitments across spectrum of investment

instruments (illustrative for MDBS & DFIs over period 2015-2020)

Convergence, www.convergence.finance/blended-finance/2021

3.0	Financing sources and their
	efficacy

Bankability of projects and the cost of debt

The cost of debt in Africa is generally high due to a range of real and perceived risk factors, including:

- Credit rating of countries
- Political, policy and regulatory risk
- Currency risk
- Relatively small scale of projects

To unlock capital, projects must be sufficiently de-risked. Thus the needs for:

- collaboration by private and public finance (i.e. spreading the risk) – also referred to as blended finance. This may also include strategies to source finance in local currency, to reduce currency risk.
- the provision of debt guarantees by governments or DFIs at reduced rates
- insurance cover

What other factors may impact bankability?

Confidence of investors/financiers may also be impacted by concerns pertaining to:

- whether, with a change in administration, contractual obligations such as power-purchase agreements will be honoured?
- financial standing of monopolistic grid infrastructure owner-operators?
- market access how supportive is the regulatory market to support e.g. corporate PPAs?
- corruption, especially for philanthropic sources (i.e. will the intended beneficiaries receive the value?)

Types and sources of financial* investment

Туре

- Debt
 - · Project finance
 - Corporate finance and (green) bond market
 - Trade finance
- Grants
- Equity
 - Independent power producer
 - Pension and private equity funds
 - Government agencies

* Non-financial instruments include Technical Advisory (TA) packages that may reduce the risk to investors in high risk sectors

Sources of debt

- Private banks
- Domestic governments / development banks
- Foreign governments
- Bi- and multi-lateral development agencies / development banks

Other financial

instruments (often

underused)

- Credit guarantee
- Insurance

What are the differences in the outcomes sought by difference sources?

Commercial / private finance

- Higher return on investment expected by equity
- Debt financiers has a shorter investment horizon
- Lower risk tolerance by both debt
 and equity
- ESG priorities influenced by off-taker

Development / public finance

Strong focus on economic development:

- local content
- job creation
- · private capital invested
- new capabilities that may improve productivity

Other ESG considerations may also be central in many (not all) bi- and multilateral development finance packages

What does a good project look like?

Finances

· Evidence of how money has been spent

Project delivery

Time and outcomes

Social licence to operate

• Is the project well liked and well regarded?

Co-benefits

· What was promised and what was delivered?

4.0	South Africa – a case study

0.1

1.1

Framework applied to the case study

Government policy / procurement process / incentives

* And other electricity market participants if applicable and the relevant size categories 9and exceptions as may apply)

South African Renewable Energy IPP Procurement Programme (REIPPPP)

Regulatory context	IPP Revenue strategies	Financing structures	Process
 State controlled monopoly distribution and generation Retailing regulated through municipalities (local government) Sub-100MW plants can operate without a licence 	 Participation in tenders run by the state the only options Direct access to the corporate market not supported 	 No subsidies Initial approach of providing feed-in tariffs replaces. Program participants underwritten by private and development finance institutions 	 Initial 3 rounds: Signalled momentum with each new round announced around the time of the previous rounds winners were announced A further 3 rounds were launched:
 Eskom / government the only buyer of power 			 Some loss of momentum during round 4 as round 3 projects faced grid constraints

• Has it / can it be regained?

Outcomes of the first 3 rounds (August 2011 to July 2014)

How does this compare to the subsequent rounds and progress towards 2030 target?

* In nominal dollar terms

As at 2018, 6.3GW of wind and solar capacity had been installed or committed / contracted against a 2030 target of 20 GW

	Coal	Nuclear	Hydro	Storage (Pumped Storage)	PV	Wind	CSP	Gas / Diesel	Other (CoGen, Biomass, Landfill)	Embedded Generation
2018	39 126	1 860	2 196	2 912	1 474	1 980	300	3 830	499	Unknown
2019	2 155					244	300			200
2020	1 433	1			114	300				200
2021	1 433	-			300	818				200
2022	711	-			400					200
2023	500				1.1					200
2024	500	1								200
2025					670	200				200
2026					1 000	1 500		2 250		200
2027					1 000	1 600		1 200		200
2028					1 000	1 600		1800		200
2029					1 000	1 600		2 850		200
2030			2 500		1 000	1 600				200
TOTAL INSTALLED	33 847	1 860	4 696	2 912	7 958	11 442	600	11 930	499	2600
Installed Capacity Mix (%)	44.6	2.5	6.2	3.8	10.5	15.1	0.9	15.7	0.7	

Installed Capacity Committed / Already Contracted Capacity

New Additional Capacity (IRP Update)

Since 2018 the 5th round has been completed and the 6th is underway

Round	Launch date	Total (GW)
5	March 2021	2.6
6	April 2022	2.6
Total (incl in at 2018)	11.5	

After more than 10 years, this would deliver approximately 57% of the 2030 target. Thus requiring a further 3 rounds of approximately 2.6 GW each. However, it takes approximately 1 year to award contracts from the date of tender close, whereafter at least 18 months to complete solar project and 2 to 3 years for wind

Current innovations to overcome hurdles

"Packaged" land parcels

Dec 2021 – 20 year leases of Eskom land to private investors for renewable energy generation

- Trial in Mpumalanga to IPPs to create renewable energy projects (bid window from 8 – 29 April 2022).
- land on site or near existing coal-fired power stations for the development of renewable energy projects. This entails proximity to transmission lines and allows Eskom to provide connection up to the nearest network connection point.
- favour generators for size and speed of delivery, in other words the fastest delivery of additional generation capacity to the grid.
- a maximum generation capacity of 100 MW for each project. The capped generation capacity means that plants can operate without a licence, and it allows generators to wheel electricity through the transmission grid as provided by the latest Amendment to the Electricity Regulation Act in 2021.

Green bonds

South African Development Bank's (**DBSA's**) **Climate Finance Facility** is an example of development finance institution issuing a green bond targeting the Southern African market

Facility size	Maturity date	Partnerships
€200.15m	7 years	Agence Française de
€200m Subscription to green bond issued by DBSA		Développement
+ €0.15m Grants to support technical assistance		

World Economic Forum Regional Action Group for Africa Financing the Future of Energy | World Economic Forum (weforum.org)

Spectrum of business models common amongst global renewable energy project proponents

• <u>6.0</u>	Discussion

0.1

1-1

Key questions

On a per capita basis South Africans has good access to electricity when compared to Nigeria's 10GW vs South Africa's 46GW. However, has the focus on distribution vs generation delivered is a system that meets the requirements of is 56 million people?

- Per capita?
- Residential vs Private Sector?

How can residual questions (slide 14 be addressed)?

How do we ensure maximising environmental and socio-economic benefits of renewable electricity investments, whilst mobilising capital to increase the pace of renewable electricity investment?